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Theoretical analysis of peculiarities of light propagating and scattering in smectic- 4 liquid crystals is
carried out. The optical anisotropy of the medium is incorporated in the analysis. The model takes into
account distortion of the layer structure as well as of the field of the directors. The intensity of the light
scattered on the director fluctuations is calculated for arbitrary directions of the incident and scattered
light. Peculiarities of the angle dependence of intensity are analyzed in detail. All geometries of the op-
tical experiment, which permit separate observation of the two fluctuation modes of the director, are ob-
tained. The extinction coefficients of the ordinary and extraordinary rays far from the smectic-
A-nematic phase transition as well as its vicinity are calculated. As a result, we obtain that, contrary to
nematic liquid crystals, outside the nearst vicinity of the phase transition point, the extinction
coefficients of the ordinary and extraordinary rays possess a similar angle dependence and are of the

same order.

PACS number(s): 83.70.Jr, 78.20.Dj

I. INTRODUCTION

At the present time light-scattering methods are exten-
sively used for studies of physical properties of various
systems. An application of these methods to liquid crys-
tals is extremely interesting, because there are highly
strong fluctuations in these systems. Due to this proper-
ty, light scattering in liquid crystals is strong. At the
same time, the experimental data interpretation has been
complicated by their intricate optical structure and, in
particular, by their optical anisotropy. For nematic
liquid crystals, a description taking into consideration
this optical anisotropy has been carried out [1-4]. It al-
lows one to develop methods of finding the thermo-
dynamic and kinetic parameters from the light-scattering
data [1-3,5].

For smectic- 4 liquid crystals, the anisotropic descrip-
tion has still not been carried out. It is known, however,
that there are some interesting features of light scattering
in these media. In particular, the prevailing part of light
scattered in a smectic- 4 liquid crystal is concentrated in
the region of the wave vectors cone whose axis is directed
along the normal to the smectic layers. This effect was
predicted by de Gennes [6] and experimentally confirmed
by Ribotta, Salin, and Durand [7].

Recently, a special interest in studying the smectic-
A —nematic phase transition has occurred. A peculiarity
of this transition is that there are two correlation lengths
possessing in the general case different critical indices. A
main method of investigation of this transition is to study
the light scattering intensity. Since the problem of
measuring these indices exactly is rather complicated, it
becomes important to give the correct theoretical
description of the corresponding optical experiment.
First and foremost, this involves rigorous consideration
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of the optical anisotropy.

The second problem is to define those geometries of an
optical experiment, for which the parameters of the
smectic-A liquid crystal are contained in the relation-
ships for the intensity of scattering in a simple way. It is
common to use for these purposes the geometries, for
which the contribution to scattering is given by one of
the two fluctuation modes of the director [8-11]. How-
ever, the problem of finding all such geometries has not
been regarded yet. Meanwhile, a knowledge of these
geometries extends the capabilities of experiments.

The third problem is to calculate the extinction
coefficient. It is well known [12,13] that extinction mea-
surements near a phase-transition point are a rather im-
portant source of the information about the critical
behavior of a system. Up to now, this problem for smec-
tic liquid crystals has not been analyzed either theoreti-
cally or experimentally.

In the present paper, we calculate the angle distribu-
tion of the light-scattering intensity and the extinction
coefficient for ordinary and extraordinary waves in
smectic- A liquid crystals, taking properly into account
their optical anisotropy. We supposed the medium to be
unlimited. In Sec. II different types of fluctuations are
analyzed in the Gaussian approximation. The modes
describing the fluctuations of the director which give the
main contribution into light scattering are regarded
comprehensively. We take into account the fluctuations
of the director itself as well as fluctuations of the director
being caused by fluctuations of the layer structure. In
Sec. III the intensity of the scattered light on the two
modes connected with the fluctuations of the director is
treated. All conditions of separately observing these
modes in a light-scattering experiment are examined. We
obtain relationships taking into account the optical an-
isotropy. In Sec. IV calculations of the extinction
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coefficient are carried out. A comprehensive analysis of
its behavior near the point of the smectic- 4 —nematic
phase transition is given.

The results obtained may be used for determining the
parameters of smectic-4 liquid crystals from light-
scattering measurements.

II. FLUCTUATIONS

Being examined as an optical system, smectic- 4 liquid
crystals display properties of a uniaxial medium with the
following equilibrium value of the dielectric tensor:

e0p=¢,8,5F€,nonY , 2.1)

where the unit vector n° directed along the optical axis of
the system is called the “director.” Here ¢, =¢,—¢, and
g, and ¢, are the dielectric permeabilities parallel and per-
pendicular to n’. In smectic-4 liquid crystals, as in
nematic ones, the vector n° is directed along the prevail-
ing direction of the long molecular axes.

From the microscopic point of view, smectic liquid
crystals are layered systems with one-dimensionally
period structures along the z axis. The value of the
period length is of the order of the intermolecular dis-
tance. For smectic- 4 liquid crystals, z is parallel to n°,
i.e., the layers are perpendicular to the director in the
equilibrium state.

If we are interested in light-scattering problems, we
can confine our examination to studying fluctuations of
the dielectric tensor 6€. There are six fluctuation modes
for any symmetrical tensor of the second rank, such as
O6€. There are one scalar mode (fluctuations of Tr€), one
longitudinal mode (fluctuations of the anisotropy ¢,), two
uniaxial transversal modes (fluctuations of the director),
and two biaxial transversal modes (a local breaking of the
uniaxiality of €). Scalar, biaxial, and longitudinal fluctua-
tions in smectic- 4 liquid crystals are comparatively small
and of the order of those in ordinary organic liquids.
(The exceptions may be connected with the biaxial fluc-
tuations near the point of the phase transitions 4 —C,
and with the longitudinal fluctuations near the point of
the phase transitions 4 —I.) That is why our examina-
tion can be confined to the director fluctuations only. In
this case in the first-order approximation, the fluctuations
of the dielectric tensor are given by

8eqp(r)=¢,[8n,(r)ng+8ng(r)n]], (2.2)
where
dn(r)=n(r)—n° (2.3)

is the quantity of the fluctuation deflection of the local
director n(r) from its equilibrium value n°.

Note that above we have dealt with spontaneous
thermal fluctuations. Aside from them in systems with
degenerated symmetry, there may be contributions to 8¢
from other physical quantities. These contributions are
connected with the so-called module conservation princi-
ple [14]. One of the possible approaches to calculate this
kind of contribution to scalar fluctuations of € from shift
fluctuations of the smectic layers has been proposed in
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Ref. [15].

For smectic- A liquid crystals, the director fluctuations
can result from two causes. First, there are purely spon-
taneous thermal fluctuations of the long molecular axes.
Contrary to nematic liquid crystals, such fluctuations re-
quire rather large energy, because they connect with the
local deflection of the director from the normal to the
layer (so-called tilt mode). Second, the director fluctua-
tions can be produced by a local shift of the layers u(r)
(dilation mode). The only component of the shift vector
u fluctuating strongly is the component that is parallel to
the z axis. Further, we shall designate it as u.

From this point of view the density of the elastic ener-
gy of a smectic-4 deformation contains three types of
contributions. The first contribution is the Frank energy,

Fy=1[K,(divn)*+K 5 (n-rotn)*+K 33(n Xrotn)’] ,

(2.4)
where K, K,,, and K ;; are the Frank moduli. This en-
ergy is connected with fluctuation deflections of the local
directors n(r) from the homogeneous state. The second
contribution is the elastic energy F; of the layered struc-
ture itself, and the third contribution is the energy Fy,
connected with deflections of the local directors from a
normal to the layers. For the sum of the second and the
third contributions, we use the representation of de
Gennes [16,17], adding the terms of the fourth order in
V)

Fp+Fy =1a|V*+16|W[*+1C\ |V, W[+ 1d,|ViVW|?
+1d'|ViW [P+ 14" |V v W]

+1C [(V,+igydn)¥|?, (2.5)

where

W(r)=|W(r)|exp{igou(r)} (2.6)

is the smectic’s order parameter, |¥(r)| is proportional to
the amplitude of the smectic density wave, 27/q, is the
period of the smectic structure, a =a'(T—Ty ), Ty, is
the temperature of the phase transition N — 4, and a’, b,
Cy, C,,d,,d’, and d" are constants (further, we suppose
them to be positive values, except d"’; in addition, the in-
equality d,d’'>d"? is supposed to be valid). In the
Gaussian approximation over small deflections from the
equilibrium value £(r)=|¥(r)| —|¥,| and u(r), we obtain
from Eq. (2.5) with an accuracy of the surface terms,

F +Fy =F(|Wo[) + L A8+ 1C\(V )2+ 1C (V)
+1B(Vu)*+1D(Vu+8n,)*+ 1K, (Viu)’
+1K; (Viu )+ 1K' ViuViu , 2.7
where
A=—2a"(T—Ty,)=2b|¥|%, B=C,q3|¥|*,
D=C,q3|¥% % K,.=d,q5|%*, (2.8)
Ki=d'q8|‘l'o|2, K;'=d"q5|¥|* .

Here | ¥, is the equilibrium value of the order parameter
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which has the form |Wo|*=—a(T—Ty,)/b for the
mean-field approximation. In the expansion over &(r), we
have neglected the terms of the fourth order in V in Eq.
(2.7). It is a consequence of Eq. (2.7) that the mode £(r)
does not interact with fluctuations of u(r) and 6n,(r).

In the limit D — o0, we can set identically

on (r)=—V,u(r) (2.9

in Eq. (2.7). This approximation corresponds to the situ-
ation when the local director is strictly perpendicular to
the layers and its fluctuations are only determined by the
fluctuations of the layer shift u(r). In this case, the total

contribution into the elastic energy density,
F ,=Fy+F, +Fy , (2.10)

connected with the layer shift fluctuations has the usual
form (cf. Refs. 18,19])
F4(w)=1B(Vu)*+1K (Viu)
+1K'(Viu)*+1K"ViuViu , 2.11)
|
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where

K=K, +K;, K'=K;, K"=K3;;+K; . (2.12)
The term K,,(n-rotn)? from Eq. (2.4) does not give any
contribution to F ,(u) in this case. For a finite value of
D, defiections of the local director from a normal to the
layers become possible. To take them into account it is
necessary to use Egs. (2.4) and (2.7) rather than (2.11).

Going over to the Fourier components, it is convenient
to represent dn g in the form

dn, ;=8n.e,+0ny4e; , (2.13)
where the unit vectors e, €,, and n° constitute a right-
hand orthogonal coordinate system, and e, lays in the
plane defined by the vectors q and n°. Thus for the given

vector q, the contribution to the elastic energy density
has the form

F(£quq,n)=1[(4+C g} +C g})lE)>+(D +K 3397 +K117)|8n,|*+(D +K 3397 +Kpq7)|8ny |

+(Bgi+Dqi+K gt +K;q} +K;'qiq})|ugl*+iDg (ugdnt —uldn, )],

where g, and g, are the components of the vector q
parallel and perpendicular to n°. Only one mode &n,
from the two modes of the director fluctuations interacts
with the layer shift fluctuations u. The quadratic form
(2.14) allows us to obtain correlators of all fluctuation
modes. In particular, for the director fluctuations, we
can write (cf. Ref. [20])

kT

(|8n;42) = ’ =, (2.15)

Aj+ijql+K33q”

(8n,48n3,)=0, (2.16)

where j=1,2,
_ Bqi+K;qt+K/qjql+Kiq] .17
M T B+ K g TR el +Ka! '
Dqi q| L9 L4991 L9

A,=D . (2.18)

Note that, contrary to nematic liquid crystals in smectic-
A liquid crystals, the director fluctuations are not Gold-
stone fluctuations.

Far from the point =Ty, the typical values of B and
K, are B~2X10" g/(cmsec?), K, ~107¢ gcm/sec? (see
Ref. [10]), K33 ~10?K, (see Ref. [11]). For estimations,
we can consider D~B, K,,~Kj;, K;~K,,
K, ~K; ~K3;, g,~q,~10° cm~'. Thus the contribu-
tions to the elastic energy connected with the changing of
the interlayer distance (the coefficient B) and the
deflection of the director from the normal to the layers
(the coefficient D) is far greater than the contributions
connected with the deflections of the director from the
homogeneous state (the coefficients K,,, K,,, and K;;)
and the layer bending (the coefficients K, K, and K;'):

(2.14)
a 2 2
B,D>>K ;91 + K34 2.19)
and
Bgi+Dgi>>K, qt+K/qla] +KLq] - (2.20)
In the lowest order over B and D, we obtain
([on g =Ky T(B'qlg?+D "],
(2.21)

(|8nyq|>) =k TD ™" .

For g, —0, the first relationship in Eq. (2.21) becomes in-
valid. In this case, it is necessary to take into account the
correction terms K;q? and K,;¢? in Egs. (2.15) and
(2.17). Thus we obtain

(|6n,q|>)=kpT[Bglq > +Kq}]7". (2.22)

Equation (2.22) coincides with the usual relationship
for the director fluctuations in smectic-A4 liquid crystals
[18,19]. The only difference is that K, is the coefficient
defined by Eq. (2.12) rather than the Frank modulus K ,;.

Near the point of the phase transition T=Ty, the
values B,D —0. In this case, the inequalities (2.19) are
invalid and now we cannot neglect the terms
ijqf+K33qﬁ in the denominators of Egs. (2.15), as we
do in Egs. (2.21). If the inequality (2.20) remains valid as
before [for example, for the mean-field theory in accor-
dance with Egs. (2.8), the ratios between values B, D, K,
K;, and K;' do not depend on a temperature], we obtain

BDgq}

— > (2.23)
Bq| +Dq;

A(g,q9,)=

and the temperature dependence of A, is defined by the
coefficients B and D. In particular,
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N Bg ﬁ‘h_z if qﬁ <«<gq? Here and below we use the notation
g )=1 2.24 .
19,90 1p ¢ gl >>q? . 2.24) a(#)=(gfcos’? +elsin®3)'

If inequality (2.20) becomes invalid for T— T, because
of the fluctuations interaction, the temperature depen-
dence of A, is defined by all sets of coefficients B, D, K,
K;,and K; in Eq. (2.17).

Thus Egs. (2.21) and (2.22) give us that far from
T=Ty, the modes (|8nlq|2) and (|8n2q|2> are of the
same order if g, ~¢,. However, for ¢,/¢,—0, the mode
( |8n2q|2) is practically invariable, and the mode
(18n,4|?) rises sharply. Near T=Ty, for ¢,70, the
modes {|dn quz) rise critically. If g, =0, the behavior of
(18n,, 2} is Goldstone’s one: ([8n, ) ~q[ %

From Egs. (2.2) and (2.13), it is easy to find the correla-
tion function of the fluctuations of the dielectric tensor
G avp(T1,13) = (8E,,(1)8e}5(r,) ). In (q) representation,
it takes the form

G aup(Q) =€} ‘212 (18n;q*Ye;,no +ejqny)
=1

X(e;nptegns) . (2.25)

III. INTENSITY

A. General relations

The intensity of a single scattering inside an anisotrop-
ic medium may be written in the form [21,4]:

2
ns)

R? | 4mc?

3
1 C088;c08°8 )

Xf(zs)e/(,ti)e(vi)GyavB(q)eLS)eg) : (3.1
Here and below the index (i) is related to the incident
wave; the index (s) is related to the scattering wave;
i,s=1 for the ordinary wave; i,s =2 for the extraordi-
nary wave; I\ is the intensity of the incident light; V is
the scattering volume; R is the distance between the
scattering point and the observation point; the condition
V173 <<R is supposed to be valid; o is the circular fre-
quency; c is the light velocity in a vacuum; q=k,—k;
k(;, and k;, are the wave vectors; n(;) and n, are the re-
fraction indexes; e and e'*’ are the polarization vectors;
and §;, and §; are the angles between the vectors of the
electric field intensity and the vectors of the electric field
induction, related to the corresponding waves. The fac-
tors f(, are connected with the wave surface Gaussian
curvatures. In uniaxial media for the waves with the
wave vectors k(; =k (;m (j =1,2), we obtain [4]

12

n =gl = | S (1 [mXxn°)

mE T ) | sind
me,cosd —n°B(F)

(2)_ 1D _

(4 sin(ﬁ)a(ﬂ) N COSSH) 1 ) (3.2)
_ B#) _ _ a(3)BA(3)

0055(2)_“—(1(0), S=1, f(z)*—‘_s‘}/zsl .

(3.3)
B(#)=¢g cos*?+e sin* ,

and + is the angle between the vectors m and n°.

Equation (3.1) corresponds to the case where the in-
cident and scattering waves propagate inside the medium.
Since the real measurements are carried out outside the
medium it is necessary to take into account the influence
of the boundaries. This problem is rather difficult; it was
regarded in detail by Lax and Nelson [21]. The correc-
tions connected with the influence of the bound-
aries result in additional angle factors in Eq. (3.1), which
depend on the angle { as well as on the geometry of the
experiment.

Note that the real direction of the wave propagation is
the Poynting vector S. Out of the medium its direction
coincides with the direction of the wave vector k, and in-
side the anisotropic medium S is not parallel to k. How-
ever, the laws of refraction and reflection are formulated
in more convenient form for k. That is why all equations
for the scattering inside media are represented here in
terms of the wave vectors k rather than S.

Calculating the convolution in Eq. (3.1) for the correla-
tion function given by Eq. (2.25), we obtain

(i), (i) (s),(s)
e, e, Guapl@leg ep

=e; 3 (lon;g/)Q;(e",e%,q),

j=12

(3.4)

where angle factors
() ) g)=T(a) (s),1,0 (s), (i), 10y72
Q;(e",e”,q)=[(e'"-e;) (e ")+ (e -e;)(e":n)]" .

(3.5)

B. Conditions for the separate observation of the
modes 8n, and 8n, in scattering

For investigation of smectic-4 properties by light-
scattering methods, it is convenient to use the experimen-
tal geometries for which the scattering contribution is
given separately by modes 8n,; and 8n, [8-11]. These
geometries are determined by turning into zero one of the
factors Qj(e(”,e”),q). The detailed calculations of all
these geometries are given in the Appendix. It turns out
that there are seven such geometries for (o)—(o0),
(0)—>(e), (e)—(0), and (e)—(e) types of scattering [here
the indices (0) and (e) correspond to the ordinary and ex-
traordinary waves]. We designate them as GO-G6.

First and foremost, the intensity of (0)— (o) scattering
turns into zero identically for both modes 8n, and &n,
and for every direction of k;, and k;,—the geometry GO.

Let us describe the other geometries G1-G6. We con-
sider the vectors n and k;, to be fixed. Then every such
geometry is defined by totality of the vectors k. It is
convenient to use the spherical coordinate system with
the polar axis being parallel to n®. The polar angles of
the vectors k;, and k) we shall designate as ; and J;,
the azimuthal angle of the vector k(; is chosen to be
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equal to zero, and that of the vector k,) is designated as
¢. Every geometry is characterized by its own relation
among the angles ;, ¢, and ¢ which defines the corre-
sponding bold line in Fig. 1. The components q,and g,
which are necessary for the calculations of { |8n jq|2 ), are
represented as functions of ¢;, ¥,, and ¢ for every
geometry. (The relationships for {|8n;y|*) are given in
Sec. I1.) In the following, we use the notation

2
(1)2

4rrc?

Vel
R 2

Ay,=I§ (3.6)

(e)

1. Geometry GI

The scattering involves the mode { |6n2q|2). The type
of scattering is (0)—(e). The equation of the line charac-
terizing the scattering for this mode only is ¢=0 [Fig.
1(a)]. The intensity of the scattering for this geometry is

sin?3,a3(9;)

I(l);-A s 5
(2) Y 5|l|/235/2('95)

(18n,1%) , 3.7

q,=(w/c)[ny)(d;)cosd; —ncos¥; ], 59
g,=(w/c)|n (8, )sind, —n,sind;| . '

U]

FIG. 1. The arrangement of the scattering wave vectors k) for which the angle factor Q; turns into zero (the case of ¢, >0). The
thick lines exhibit the points on the wave surface defined by this kind of k,, for the preliminary given incident wave vector k;. The
thin lined circle and ellipse exhibit the wave surface for a uniaxial medium. (a) i =1, s=2, j=1. (b) i=2,s=1, j=1. (c)i=1,
s=2,j=2. dl)i=2,s5=1, j=2, k(,-,l <k. (d2) i=2,5=1, j=2, k(,~,1>k(,,. (e) i=s=2, j=1. (f) i =s =2, j=2. The corre-
sponded coordinate system is shown in the bottom left-hand corner of every figure.
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2. Geometry G2

The scattering involves the mode { |6n 2q |2). The type
of scattering is (e)—(0). The equation of the line charac-
terizing the scattering for this mode only is ¢=0 [Fig.
1(b)]. The intensity of the scattering for this geometry is

g3sin®,;
13=4 ———([8ny?) (3.9)
(1) Oeﬁlza(ﬂi)ﬁl/z(ai) I 2‘1,
qN=(a)/C)[n(1)COS19s—n(z)(t‘}i)cosﬁi] N
(3.10)

ql=(a)/C)‘n(1)Sin195 _n(z)('ﬁi )Sin‘l?,-l .

3. Geometry G3

The scattering involves the mode \Bnlqlz). The type
of scattering is (0)—(e). The equation of the line charac-
terizing the scattering for this mode only is
nsind; =n,(J, )sind cos¢ [Fig. 1(c)]. The intensity of
the scattering for this geometry is

sin?d,a’(d,)

IV =A,————(|8n %), (3.11)
(2) 0 E(I(/ZBS/Z({}S) ' lq}

g, =(@/c)[n)(d)cosd; —ncosd;] ,

(3.12)
q,=(w/c)[nk)(8,)sin*3, —n},sin’d; 1'% .
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4. Geometry G4

The scattering involves the mode { |6n lqlz ). The type
of scattering is (e)—(0). The equation of the line charac-
terizing the scattering for this mode only is
nsind =n,,(3;)sind;cosé [Fig. 1(d)]. The intensity of
the scattering for this geometry is

e2sin?d;
13 =4 L (|8n,,12), (3.13)
(1) 0 E‘}/Za(‘ﬂi )Bl/l(ai) | lqi
q,=(w/c)[n)cosd; —n(d;)cosd;] ,
(3.14)

q,=(w/c)[nk)(8,)sin®®; —n?sin?3,]'/* .

5. Geometry G5a

The scattering involves the mode (|8n,,|*). The type
of scattering is (e)—(e). The equation of the line charac-
terizing the scattering for this mode only is ¢; =3, [Fig.
1(e)]. The intensity of the scattering for this geometry is

2
ga’(d;)
——"——)—-sinz(2z9,~)cosz(¢/2)<|5n2q|2), (3.15)

i

(3.16)
q,=2w/c)n,)(3;)sind;sin(¢/2) .

6. Geometry G5b

The scattering involves the mode { |6n 2q |2). The type of scattering is (e)—(e). The equation of the line characteriz-
ing the scattering for this mode only is

_ [ng)(8)cosd; —n (3 )cosd; Jsind;sind

cos — —
n5)(¥; )cosdsin“d; —n ;) (¥ )cosd;sin“d,

[Fig. 1(e)]. The intensity of the scattering for this geometry is

g,a’(F,) 1 )(8; )cosd,sin?d; +n 5 (I, Jcosd;sin’ T,

I3 =4 in(d; —d )sin(J; + ) ([8nyq1%) .
2= Ao 58 A9 5 A, i T ) (9, )08, S0’ — 1y (9, Joosdsin?d,
(3.17)

g, =(@/c)[ny)(F;)cosd; —ny)(3;)cosd; ],

(8, )cosd,sin?; +n 5, (3, cosd;sin?d, |
g, =(o/c) | —2- 220 2 Tt [ndy)(8,)sin?d, —n (9, )sin?S, |72 . (3.18)

n(3(3;)cosdsin*F; —n (I, Jcosd;sin®F,
-
7. Geometry G6a g, =(@/c)[ng)(F)cosd, —n(F;)cosd; ], (3.20)

The scattering involves the mode {|8n,4|?). The type ¢, =(w/c )1y (S )sind; —n (3, )sind; | .
of scattering is (e)—(e). The equation of the line charac-
terizing the scattering on this mode is ¢=0 [Fig. 1()].

The intensity of the scattering for this geometry is
ga’(d)
® a(8,)B" (3,87 43,)

8. Geometry G6b

The scattering involves the mode {|8n,4|*). The type
of scattering is (e)—(e). The equation of the line charac-
terizing the scattering for this mode is ¢; =43, [Fig. 1(0].
The intensity of the scattering for this geometry is

13=4 sin’(9; +9,)¢|8n]")

(3.19)
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gaX(d;)
I8 = Ao—L——sin28,)sin%($/2)(|8n,,[?) , (32D
B(3;)
q,= 2w /c)n(3;)cosd; ,
(3.22)

g, =2(w/c)n,(3;)sind;sin(¢$/2) .

Note that the definition of the vectors e; and e, given
in Eq. (2.13) becomes impossible for q;=0. That is why
partitioning 8n, into two modes 6n;4 also becomes impos-
sible in this case. In Fig. 1 the points 4,, and B,,,
m=1,2,3, corresponds to this condition, where q,=0.
In fact, all these points are the points of the intersection
of the lines on which Q, and Q, turn to zero. Then one
would expect that the intensity of scattering at these
points is equal to zero. However, it is not true in general.
In this case it is necessary to regard the complete intensi-
ty. In the limit q,—0, Egs. (2.15) and (2.17) give

(18n,412) =([8nyg|*) =——— . (3.23)
g 4 D +K334ﬁ
Taking into account the identity
e1ge1pternerptnony==8,4, (3.24)

we can rewrite the correlation function (2.25) in the form

. EakgT o 0
G“avﬁ(q",ql—-O)—m(ﬁyvngng+6uﬁnanv
+,4n 2n2 +38,,n 2ng
—4ngngn?,ng) . (3.25)

Then from Egs. (3.25) and (3.1) we have
I?)) N(no,e(i))2+(n0_e(s))2
s
+2(e'?.e)(n% e ?)(n% ')
—4(n%e")X(n%e'*)? (3.26)

Thus for geometries G1 and G3, or G2 and G4, the in-
tensities of the scattering at the points 4, and B, or 4,
and B,, correspondingly (see Fig. 1),

I} ~(n%e?)?, (3.27)
differs from zero for ¢,70, ¢;7m /2. For the geometries
G5 and G6 at the point 4, (forward scattering),

1) ~4(n%e?)[1—(n%e?)?], (3.28)

also differs from zero for ¢,7#0, #;77/2; and, at the
point B,
I3=0. 329
Thus it is necessary to exclude the points 4, B, 4,, B,,
and A; from the lines of the intensities equal to zero (in
Fig. 1 they are designated by unfilled circles). On the
contrary, at the point B, the intensity is actually equal
to zero.
The calculations of intensities with the correlation
function given by Eq. (3.25) show that one can make use
of Eq. (3.7) or (3.11) for the points 4, and B,. For g, we
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have for these points
q,=(o/c)e}"’sind,(cotd, —cotd;) . (3.30)

Analogously, for the points 4, and B,, one can make use
of Eq. (3.9) or (3.13). For g, we have for these points

(3.31)

Note that for the points 4,, B,, 4,, and B, the angles J;
and 3, are related by

q,=(w/c)e}’sind,(cotd, —cotd;) .

cot?3,—cot’?; =¢, /g - (3.32)

For the point A4, (forward scattering), one can make use
of Egs. (3.15) or (3.19), taking into consideration the con-
ditions ¢=0 or ;=d,, correspondingly. In this case
q=0. For all these special points, it is implied that Eq.
(3.23) is used for {|8n 4]} and (|8n,0|*).

Note that the simultaneous turning of Q; and Q, to
zero corresponds to the absence of the contribution of the
director fluctuations to the scattering. For the geometry
GO, the condition Q, =Q,=0 is obeyed identically. For
the geometries G1 and G3, the simultaneous turning of
Q, and Q, to zero is impossible because the correspond-
ing curved lines have no points of intersection. For the
geometries G2 and G4, the points D, and E, are com-
mon but the directions of the polarization vectors e'*
defined by these geometries are orthogonal to each other
for each of these points. Thus it is impossible to satisfy
the conditions Q; =0 and Q, =0 at each of the points D,
and E, simultaneously. The same conclusion is true for
the points D; and E; for the geometries G5 and G6. At
the common points for the last geometries, points C and
B, the conditions of the simultaneous turning of Q,; and
Q, to zero are noncontradictory. Moreover, for G5 and
G6, for 3;=m/2, there is a whole line (“equator”) of
common points, where Q;=Q,=0. Note that this
analysis of the turning Q, and Q, to zero is also valid for
nematic liquid crystals. Particularly, the condition
Q,=0,=0 for them had been analyzed [4,22]. It is easy
to see that the results of these two examinations are in
complete agreement.

C. Features of the scattering far from the
phase-transition point Ty ,

Far from the point Ty, the mode (|8n,y|*) increases
rapidly in the region of g, /q;, —0. This fact was men-
tioned at the end of Sec. II. In this region, the mode
(|én quz) can be ignored. Taking into account that the
quantities g, and ¢, in optics are of the order of w/c, we

have from Eq. (2.22) under the condition
(w/c)K,/B <1,
2y ‘lTkBTa(q")
(18n4l )~_—(KIB)”2 (3.33)

Here we use the well-known representation for the §
function,

G
8(x)=m !1_:3) R
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FIG. 2. Mutual arrangement of the incident (k) and scat-
tered (k) wave vectors on the wave surface for the intensive
scattering. (The case of €, >0.) The casesi =1,s =2 and i =2,
s =1 are possible.

One can see from Egs. (2.25), (3.1), and (3.33) that the
scattered light is concentrated in the region of those
directions of the wave vectors k), for which ¢, =0, i.e.,
k(s)|| =k, oy For uniaxial media, this equality means that
k() must be situated on the surfaces of two circular
cones, with n; as the axis of symmetry. This effect was
predicted by de Gennes [6] and experimentally confirmed

N T T T P
/ ™, / \

—j "\ // “—‘
— 1
@ | \ / }
c ! \ J |
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5 \ |
= | \ J 1
> 4 A\ / |
& 1 \\ / H
E’ ( \ / 5,
z \ / i

i \ / b

{ \ / |

" V4
1 1 1
0° 90° 180° 270° 360°
¢ (deg)
(a)
(b)

FIG. 3. (a) The angle dependence of the intensity of the

scattering along the ring calculated by use of Eq. (3.35). We set
€;=3.5, €,=2.5. (b) The corresponding geometry of scattering
(i=1,s=2).
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by Ribotta, Salin, and Durand [7].

Figure 2 shows the k(;) and k() wave-vector arrange-
ment for the scattering in a smectic- 4 liquid crystal. The
plane L which is perpendicular to n° selects on the wave
surfaces two circles O, and O(,,. These circles are relat-
ed to the ordinary and extraordinary waves. Let the vec-
tor k; lie on one of them. Then the condition &, | =k,

gives us that k;, must lie on one of them too. The values
of the polar angles ¥, (between k;, and n°) and &, (be-
tween k(,, and n%), which are determined from the circles
0O,y and O, in Fig. 2, are connected by

tand, = (g, /¢e,)'*tand, (3.34)

It is the consequence of the geometries GO and GSa
(Sec. III B) that the intensities I{}) and I{3) are equal to
zero for these directions. This fact was mentioned in
Refs. [7,23].

Thus the intensive scattering is concentrated in the
narrow ring of k(;, in the plane which is perpendicular to
n°. Its center is defined by the director, and the angle ra-
dius is equal to ¢, and can be found as a function of ¥,
from Eq. (3.34). The angle distribution of the intensity
along this ring can be found from Eq. (3.1),
10 = :—:“sm2¢

AD(9;) (3.35)

g, +e,—2(eg) cosp
where ¢ is the azimuthal angle measured with respect to

the direction of k“h' Here we use Egs. (3.4), (3.5), and

(3.33). One can see that if =0 and ¢ =1, the intensity
of the scattering becomes equal to zero. Figure 3 shows
the angle distribution of the intensity along the ring. The
factors A4 {!)(8;) defining the dependence of the intensities
on the polar angles #; are calculated in Sec. IV. The dis-
tribution (3.35) coincides at least qualitatively with exper-

imental data [23,24].

IV. EXTINCTION COEFFICIENT

The relationship for the extinction coefficient in aniso-
tropic media has the form [4] (cf. Ref. [1])

(i) , (i) (s)

r ___(CL)/C)4 e/,tev E f n(s)e eB
0
Y (4m)? ngcos?d;, S " cos?,,
XG sk~ ki)

(4.1)

where d Q denotes the integration over all orientations of
the unit vector m;,=k,,/k ;) and G, is defined by Eq.
(2.25).

Since for 7;) calculations one must carry out the sum-
mation over the two types of the scattered waves, s =1,2,
in Eq. (4.1) as well as over the two types of fluctuation
modes, j=1,2, in Eq. (2.25), it is convenient to use the
designation 7;(; ;, for the contribution to the extinction of
the wave of the type (s) which arises from the scattering
of the wave of the type (i) on the fluctuation mode 8n;,
ie.,
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TH= 2 Tils - 4.2)

js=12
Note that 7;(; ;)=0 by virtue of the geometry GO from
Sec. III.

The direct calculation of the two-dimensional integral
(4.1) is rather cumbersome. However, it is possible to ob-
tain more simple approximate relationships for 7. Let
us regard two different cases—the system far from its
critical point, when we can make use of the relationships
(2.21) and (2.22), and the system in the nearest vicinity of
this point, when it is necessary to use Egs. (2.15), (2.17),
(2.18), and (2.23).

In the first case, we can use the fact that the parame-
ters ¢, =D/(K, k%) and ¢,=B/(K,,,k3) [here
m=1,2,3, ko=(w/c)”'] satisfy the inequalities £} >>1
and £z >>1. Let us search for the asymptotical approxi-
mation of 7; in Eq. (4.1) under the conditions {5 — o
and {z— . Making use of Egs. (2.21), it is easy to see
from Eqgs. (4.1) and (4.2) that 7, g~ oC5 ' +BisCp"
and Ty, )~V ;95 » Where ), B, and ¥ ;) are some
constants. One can obtain, however, that the two-
dimensional integrals defining the values of the
coefficients a; ) are diverging for g, —0, i7s. (The value
of a, ;) is finite by virtue of the geometry G5a.) One of
the consequences of this divergence is the fact that the
main contribution in the integral (4.1) gives the vicinity
of g, =0 only, i.e., the vectors k) situated in the vicinity
of the circles O(;, and O,, (see Fig. 2). Thus the contri-
bution to the intensity in the vicinity of these circles pre-
vails not by its absolute value only, as mentioned in Sec.
III, but also by its contribution to the integral.

From the mathematical point of view the equality of
Qg to infinity means that the asymptotic behavior of
Tiis) is slower than {z'. For its determination it is
sufficient to set g, =0 (i.e., to replace k(s)” by km”) in all

factors in the integral (4.1), except (l&nlqlz), the diver-
gence with which it is connected. After this replacement,
(|8n,4]?) is the only factor integrating over k(- Since

the main contribution in the integration contributes only
in the small vicinity of k(s)“ =k(,-)u, we can use Eq. (2.22)

for it and extend the limits of this integration to — « and
+ . Carrying out this procedure is equivalent to mak-
ing use of (|8n,4]%) in the form (3.33) in the integral
(4.1). This gives the main term of the asymptotic expan-
sion being proportional to B ~!/2. The proper asymptotic
form for {p— o0 and £z — o is

Tn=abg'?+bg'+ctp'+ 0, 4.3)

where a, b, and c are finite constants. Under the assump-
tion that B and D are values of the same order, it is
sufficient to take into account only the terms fﬁ) propor-
tional to {5 !/?, neglecting the terms proportional to {5
and £5!in Eq. 4.3).

Equation (3.33) and the relationship

ff(x)S(g(x))dx=2 lg’(x*)|"1f(x*), (4.4)
x‘

where x * are the roots of the equation g(x)=0, allow us
to carry out one integration in Eq. (4.1). Parametrizing
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the vector k(; on the circle of the rest integration Oy, as
k5 (cosg,sing), 0 < ¢ =27, and taking into account Egs.
(3.4) and (3.5), we have

82 kB r ns)

16w (K ,B)"? n(;cos?8;cos?8 )/ ;)

(2),00y2 [ 27 (1,0 )2 4.5
X (2000 [ Tdgle e, , @.5)
where s7i and
an
Jisy=ns) 39, cotd (4.6)

Here we make use of the relationshi? (e'V-n%)=0 and get
the values n ), cosd ), J ), and (e*n°) out from the in-
tegration, because they do not depend on the azimuthal
angle ¢. It is easy to obtain the values of n (),
ne(3,), cosdy(3;), cosd,(d;), (?-n°), and J;, from
Egs. (3.2). In particular,
Joy=nq)(9)=¢l"?,
4.7)
€

"By

The integration over ¢ in Eq. (4.5) for both cases i =1,
s=2andi=2,s=1yields

Jay=n@m(d,

Lfawéﬂqﬂ=;;£3;ﬁ. @.8)
Thus we obtain from Egs. (4.5)-(4.8),
3 2

(9= (w1/6C) (1‘(’1:1,1:)‘”2 e}/zmzlxe(”el,e”)gmwi) ’

(4.9)
where

gy(d) =sin’d ,

(4.10)

elsin’d,

(%)= .
gt g"2(g;sin’¥, +¢ cos’d,)*
For typical smectic-A4 liquid crystals, where B ~2X 10’
g/(cmsec?), K|, ~107% dyn, e, ~1, and £~ 3, it is easy to
obtain the following estimation for the extinction
coefficient far from the point of the phase transition:

e (w/c)? kgT €2
(1) (2) 16 (KIB)I/Z 81/2
~0.4cm™!. 4.11)

It is interesting to pay attention to the fact that the value
7(1) is one order less, and 75, is two orders less, than the
corresponding values in nematic liquid crystals [1,3,4].
Meanwhile, the extinction coefficient in smectic- 4 liquid
crystals is several orders more than that in ordinary or-
ganic liquids [25].

When T— Ty, the coefficients B and D decrease. As
long as the parameters {5 and §, are still rather big,
there is no reason to take into account for 7 ;) the correc-
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tion term proportional to {3 ! in Eq. (4.3). But this state-
ment is not, in general, valid for the term proportional to
¢p!. The fact is that [26]

B~|T—Ty, 1%,
, (4.12)
D~|T—Ty,l*

for T—Ty,. There are different theoretical predictions
as well as experimental results for the values of ¢ and ¢’
[26], but all theories predict ¢’ > ¢. The usual experimen-
tal data are [27] ¢=0.3 and ¢’=0.5. In this case, the in-
creasing of the term c{;! from Eq. (4.3) is quicker than
that of the term a5 '/? (and quicker than b¢3!). Asa re-
sult, it may be that the values ¢! and afp!/? are of the
same order for the temperature region, where Egs. (2.21)
and (2.22) are still valid. For the calculation of the con-
tribution of the order of £5! into extinction, note that
this contribution, in contrast to the term in Eq. (4.3) of
the order of {572, is defined by all possible directions of
the unit vectors m,), rather than the vicinity of g, =0. In
this case one can use Eq. (2.21) and, by analogy with Egs.
(3.23) and (3.25), the corresponding contribution into

G ,2,5(q) being proportional to &5 has the form
e2kp T

D

(8,,nonp+8,gn0n5+8,4n0n"

+8monp—4nnoning) . (4.13)

Substituting (4.13) into Eq. (4.1) and integrating over ¢
and ;, we obtain the corresponding contributions into
T(ip

(w/c)* kT

M= " gr D Ca (4.14)
(w/c)* kgT
o=
£,(3¢, +¢)sin’d; +2efcos’d;
X , (4.15)

Etll /2B3/2(1?[ )

where () is defined by Eq. (3.3). Note that 7{}, does not
depend on the direction of the incident ray.

For #; =0, the value 77, being calculated from Eq. (4.9)
turns out to be equal to zero. In this case, it is necessary
to take into consideration the next term of the asymptotic
expansion over {p. In our case, 75,(0)~¢z' and this
contribution is defined by the mode 6n, only. For its cal-
culation, we can make use of Eq. (2.21) taking into ac-
count only the term being proportional to £z!. The
divergence for g, =0 cancels because of the angle factor.
After integration over ¢ and J; we have

(w/c)* kgT E?JEH

4.16
6T B ¢ ( )

78(0)=

For the same values of the parameters of the smectic- 4
liquid crystal as before, one can obtain the following es-
timation: 7;(0)=75,(0)+70(0)~10"2cm™".

Thus the extinction coefficient far from Ty , is

T3 =13+ 708 4.17)
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where 70(3;) and 77(3;) are defined by Egs. (4.9), (4.14),
and (4.15).

Figure 4 illustrates the angle dependence of 7(,, and 75,
far from the point of the phase transition. In the case of
g,> €, we have 7(;)> 7,), and if g <g|, the situation is re-
verse.

Let us now regard the case of the vicinity of Ty ,,
where £ <<1 and ¢, <<1. In this case for ( |8njq|2>, we
must use Eq. (2.15) regarding A; as small parameters. In
the limit A ;—0, the director fluctuations for smectic- 4
liquid crystals are very similar to that for nematic liquid
crystals in the external field H. The only difference is
that, for a nematic liquid crystal, A, and A, are equal to
each other and do not depend on q, A, =A, =y, H?.

The limit transition {g,6p —0 is possible for 7;(3;), if
the incident wave is ordinary, i.e., i=1. In this case, the
expression for the extinction coefficient coincides com-
pletely with that for the ordinary wave in nematic liquid
crystals [4],
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FIG. 4. The angle dependence of the extinction coefficients
for the ordinary and extraordinary incident rays. Here we use
the following values of the parameters: (w/c)=10° cm™',
T=300 K, B=D=2X10" g/(cmsec?) and K,;=107° dyn. (a)
The case of €,>0: g=3.5, ¢,=2.5. (b) The case of g, <0:
g=2.5,€,=3.5.
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2
(w/c)? kpT €€, pn  sin®d | . ,. L—h 2 2 —1
= + +o , 4.18
T e e 62 o ey M o o, Mt AL, Mt AL, | @18
where
172 2
A=Msin20i+sin20, m=|B (0)cosﬂi—cosﬂ s
€ g
4.19)

K
@, =[M*+2t,, AM +12( A —2sin*3)*]'2, 1, =——

, m=12.
K3

In the case of the extraordinary incident wave (i =2), 7(,)(¢};) diverges logarithmically for 5,5, —0. Further, we
confine our examination by the logarithmical approximation over {z,{,. Since only the small vectors q contribute to
the integral, we can use Eq. (2.23) instead of Eq. (2.17) regardless of the validity of inequality (2.20). Then we can ob-

tain for the extinction coefficient (cf. Ref. [4] for nematic liquid crystals)

(w/c) kT eie, 2 t,cosd;
i) = 29,
i) 87 K33 Bz(ﬁi)sm( ) F,(F,+t,cosd;)
where
g2 172
F, = |tZcos?®, +t,—sin®; | 4.21)
&)

t,, is defined by Eqgs. (4.19), and m =1,2. Note that in the
limit T— Ty 4, the condition ¢’ > ¢ gives that both loga-
rithms in Eq. (4.20) are defined by the parameter {5
The expression for 7(,,/In(T — Ty 4 ) contains the index ¢’
as a factor. We emphasize that, contrary to Eq. (4.9), the
Frank moduli K, and K,; appear in Egs. (4.18) and
(4.20) rather than the effective moduli K, and K", from
Eq. (2.15).

It is easy to estimate the order of the values of ;) and
T2y in Egs. (4.18) and (4.20) making use of the corre-
sponding values in nematic liquid crystals [4]: 7,5~ 10
¢~ 7o)y ~50 cm™!. Taking into account the experi-
mental data for the coefficient K;; behavior near Ty,

"1] (the value of K33 for T= Ty, is one order more than
its - 1lue in the nematic phase), it may be concluded that
the corresponding values for smectic- 4 liquid crystals are
one order less, i.e., 744 ~1cm™!, 75, ,~5 cm™!. How-
ever, it is necessary to note that measurements of 7, in
this case are rather difficult because of the strong forward
scattering. This difficulty was mentioned for nematic
liquid crystals [4,28].

APPENDIX

Let us regard those geometrical conditions which give
the angle factors Q;(e'”,e”),q) turning to zero. Let us ex-
amine the cases of different polarizations.

(1) i=1, s=1. Itis easy to obtain from Egs. (3.2) that
(e'V-n°)=0. Using this fact one can see that Q, =0 and
Q,=0. It gives us the geometry GO.

(2) i=1, s=2; i=2, s=1. The equality Q,=0 gives
the condition (e;-e'’))=0 because of the relationships

In(&p !+ &5 Isin™29;)+

1

S =1 ,
F,+t,cosd,; n(6p)

(4.20)

I

(eM-n%=0, (¢?-n°)70. [The case of (¢!?n°)=0 corre-
sponds to k,)|[n°® is, in fact, related to case (1) above.]
From the equations (e,-n°)=0, (e'V-n%)=0, (e1°e‘“)=0
we have e,||e'". Because of k;,le!"), the vector k(;, lays
in the plane defined by the vectors e; and n®. The vector
q=k,—ky; also lays in this plane. That is why the vec-
tor k(,) lays in this plane too. Thus we have that, in the
general case, the condition Q; =0 means that the vector
k() lays in the plane defined by the vectors n° and k;, [see
Figs. 1(a) and 1(b)]—the geometries G1 and G2. In the
degenerate situations for k,,||n’ case (1) is realized, and,
if k(1)||n% an additional condition is necessary: the vector
e'" must be perpendicular to the plane of the vectors k5,
and n°.

Analogously for the condition @,=0, we have
(e,-¢!V)=0. The equations (e,-n°)=0, (e'"’-n®)=0 gives
e,|le'”. Because of the fact that k;, is perpendicular to
e'!, the vector k(;, lays in the plane defined by the vec-
tors e, and n’. From the conditions (q-e,)=0,
ki =q+k(; we have (kg -e,)=(kge,). Note that in
this case, e, is perpendicular to the plane defined by the
vectors e’ and n°. Thus for Q, =0, we have the follow-
ing situations. If the vectors n® and k;, are fixed, the end
of the vector k(,, must be situated on the curved line
defined by the intersection of the wave surface and the
plane which is parallel to the vectors n° and e'', and
passes through the end of the vector k ;). (If k;)||n°, then
an additional condition is necessary: the vector e'!’ must
be situated in the plane of the vectors k,, and n°.)

In the case of i =1, s =2, the construction carried out
above defines the geometry of scattering, i.e., the arrange-
ment of k, for which Q,=0. In this case, the ends of
the seeking vectors k(;) are situated on the ellipse [Fig.
1(c)]—the geometry G3. For g, >0, such geometries ex-
ist for every k(;, and, for €, <0, only if the condition
g,sin’3; <g, is valid.

For further analysis, it is convenient to use the spheri-
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cal coordinate system with the polar axis z|[n’ and the
vector k; lying in the plane of the axes x and z:

k) =(w/c)n(¥;)(sind;,0,cosd;) ,
(A1)
k() =(w/c)n,(d)(sindcosg;,sindsing,,cosd, ) .

In the case of i =2, s =1, the condition of turning of Q,
to zero described above yields

[n(5)(3;)sind; tand; — n(y)(F; )sind tand Jcosp, +[n(5)(F; )cosd; —n (I, )cosd Jtand;tand, =0 .

The following two cases are possible. First, Eq. (A3) is
true identically for every ¢ if 3; =3, [see the bold circle
in Fig. 1(e)]—the geometry G5a. Secondly, for ¢;#4d,,
there is only the value of cosp, defined by Eq. (A3) for
every couple #;,3,. It is easy to show that this value of
cos@, satisfy the condition —1=cosp; =1. That is why
there is another curved line on the wave surface besides
the circle mentioned above for which Q, =0 [Fig. 1(e)]—
the geometry G5b. It passes through the poles of the el-
lipsoid (i.e., the points #;=0 and ;=) and has one
point of self-intersection.
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n(psind; = n,)(J; )sind;cosg; . (A2)
The line defined by this condition on the wave surface is
shown in Figs. 1(d1) and 1(d2)—the geometry G4. For
g, >0, both cases (d1) and (d2) can be realized, and, for
€, <0, only case (d1) can.

(3) i=s=2. In the coordinate system described above,
the condition Q, =0 takes the form

(A3)

—

The condition @, =0 in our coordinate system has the
form

[n(2)(8;)sind;tand; +n,)(J, )sind tand Jsing, =0 .
(A4)
Here two cases are also possible. First, for every ¢;,3,,
we have sing,=0 [Fig. 1(f)]—the geometry Géa.

Secondly, the other factor in Eq. (A4) turns to zero, if
&, =m—13,; [Fig. 1(f)]—the geometry G6b.

[1] D. Langevin and M. Bouchait, J. Phys. (Paris) Collog. 36,
C3-197 (1975).

[2] E. Miraldi, L. Trossi, P. Taverna Valabreda, and C. Ol-
dano, Nuovo Cimento B 60, 165 (1980).

[3] E. Miraldi, L. Trossi, P. Taverna Valabreda, and C. Ol-
dano, Nuovo Cimento B 66, 179 (1981).

[4] A. Yu. Valkov and V. P. Romanov, Zh. Eksp. Teor. Fiz.
90, 1264 (1986) [Sov. Phys. JETP 63, 737 (1986)].

[5] V. Taratuta, A. I. Hurd, and R. B. Meyer, Phys. Rev. Lett.
55, 246 (1985).

[6] P. G. de Gennes, J. Phys. (Paris) 30, Suppl. C-4, 65 (1969).

[7]1 R. Ribotta, D. Salin, and G. Durand, Phys. Rev. Lett. 32,
6 (1974).

[8] Juyang Huang and J. T. Ho, Phys. Rev. A 38, 400 (1988).

[9] H.-J. Fromm, J. Phys. (Paris) 48, 641 (1987).

[10] M. E. Lewis, I. Khan, N. Vithana, Alan Baldwin, D. L.
Johnson, and M. E. Neubert, Phys. Rev. A 38, 3702
(1988).

[11] H. von Kinel and J. D. Litster, Phys. Rev. A 23, 3251
(1981).

[12] R. B. Copelman and R. W. Gammon, Phys. Rev. A 29,
2048 (1984).

[13] L. A. Zubkov and V. P. Romanov, Usp. Fiz. Nauk 154,
615 (1988) [Sov. Phys. Usp. 31, 328 (1988)].

[14] A. Z. Patashinskii and V. 1. Pokrovskii, Fluctuation
Theory of Phase Transitions (Pergamon, Oxford, 1979).
See also the second edition of this book (Nauka, Moskow,
1982) (in Russian), where the application of this idea to

liquid crystals is considered.

[15] I. P. Liuksiutov, Zh. Eksp. Teor. Fiz. 75, 760 (1978) [Sov.
Phys. JETP 48, 383 (1978)].

[16] P. G. de Gennes, Solid State Commun. 10, 753 (1972).

[17] W. L. McMillan, Phys. Rev. A 4, 1238 (1971).

(18] P. G. de Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1974).

[19] S. Chandrasekhar, Liguid Crystals (Cambridge University
Press, Cambridge, England, 1977).

[20] F. Brochard, J. Phys. (Paris) 34, 411 (1973).

[21] M. Lax and D. F. Nelson, in Proceedings of the Third Ro-
chester Conference on Coherence and Quantum Optics,
edited by L. Mandel and E. Wolf (Plenum, New York,
1973), p. 415.

[22] A. Yu. Val’kov and V. P. Romanov, Zh. Eksp. Teor. Fiz.
83, 1777 (1982). [Sov. Phys. JETP 56, 1028 (1982)].

[23] R. Ribotta, G. Durand, and J. D. Litster, Solid State Com-
mun. 12, 27 (1973).

[24] N. A. Clark and P. S. Pershan, Phys. Rev. Lett. 30, 3
(1973).

[25]1J. L. Fabelinskii, Molecular Scattering of Light (Plenum,
New York, 1968).

[26] T. C. Lubensky, J. Chim. Phys. 30, 31 (1983).

[27] See, e.g., Table I in Ref. [10].

[28] A. Yu. Val’kov, L. A. Zubkov, A. P. Kovshik, and V. P.
Romanov, Pis’'ma Zh. Eksp. Teor. Fiz. 40, 281 (1984)
[JETP Lett. 40, 1064 (1984)].



